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Localized structures embedded in the eigenfunctions of chaotic Hamiltonian systems
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We study quantum localization phenomena in chaotic systems with a parameter. The parametric motion of
energy levels proceeds without crossing any other and the defined avoided crossings quantify the interaction
between states. We propose the elimination of avoided crossings as the natural mechanism to uncover localized
structures. We describe an efficient method for the elimination of avoided crossings in chaotic billiards and
apply it to the stadium billiard. We find many scars of short periodic orbits revealing the skeleton on which
quantum mechanics is built. Moreover, we have observed strong interaction between similar localized struc-
tures.@S1063-651X~98!51311-6#

PACS number~s!: 05.45.1b, 03.20.1i, 03.65.Sq
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The connection between individual eigenstates and cla
cal invariant sets in chaotic systems is far from being fu
understood at present. A first step was given by Berry@1#
and Voros@2# 20 years ago. They conjectured that the eig
states are associated with the whole energy surface exp
ergodically by the orbits and then, the eigenstates would
locally like random superpositions of plane waves. That p
ture is supported by Shnirelman’s theorem@3# and the pio-
neering numerical work by McDonald and Kaufman@4# on
the Bunimovich stadium billiard, an ergodic system@5#.
However, the paper by Heller@6# modified that point of
view. He emphasized that a large number of high exci
eigenfunctions for the stadium billiard has an enhancem
along the shorter periodic trajectories~scars!. In 1988, Bogo-
molny @7# developed the semiclassical theory of scars a
explained the extra density near unstable periodic traje
ries. He represented the probability density as a sum ov
finite number of periodic orbits~see also@8#!.

Another unexpected localization phenomenon was
served in the stadium billiard for the first time; the famo
bouncing ball~BB! states@9#. They correspond to the family
of neutral periodic orbits living in the stadium. Localizatio
is stronger than in the case of scars and survives the s
classical limit@10#. The semiclassical theory of BB was d
veloped recently by Tanner@11#.

It is easy to observe BB states in the stadium billiard,
it is practically impossible to find complete series of B
states. On the other hand, it is very difficult to find a fam
of scars. That is, given a scar with wave numberk which
is associated to a particular periodic orbit of lengthL,
we expect to see a family of scars of the same orbit
k12pn/L @6#, with n an integer. But in general, a sequen
of similar scars is not observed. Such a phenomenon app
only for some short periodic orbits in some regions of t
spectrum but it is impossible to define a systematic of sc
@12#.

We believe that in order to study the mechanisms giv
rise to localization it is necessary first to clean the spectr
The individual properties of two well defined states depe
ing on a parameter are mixed when they collide in
avoided crossing@13#. Then, we expect that the eliminatio
of avoided crossings~AC! in systems governed by a param
eter dependent Hamiltonian provides a mechanism for lo
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ization. But in a chaotic system it is impossible to remove
AC because an individual eigenstate interacts strongly w
other states and the interaction is of long range. However,
will extract only the AC with highest curvatures. Recently,
was stressed@14# that the distribution of highest curvature
has a universal character and the tail of low curvatures
particular property of the system possibly associated w
scarring phenomena. Precisely, we want toremove the uni-
versal property of chaotic eigenfunctions related to t
Shnirelman’s theorem, and to retain fluctuations revealed
like phase space localization. On the same footing, Takam
@15# has suggested that AC are contributed by long perio
orbits. In the light of this, by removing AC, scars of sho
periodic orbits would arise.

We have developed a simple method to remove AC
chaotic billiards governed by a shape parameter. Let’sfm(r )
andfn(r ) be normalized eigenfunctions of a planar billia
with Dirichlet conditions on the boundaryC. In Ref. @16# the
following quasiorthogonality relation was shown

R
C

]fm

]n

]fn

]n

r n ds

2kmkn
5dm,n1

~km2kn!

~km1kn!
O~1!, ~1!

wherekm andkn are the corresponding eigenwave numbe
r n[r•n with n the outward normal unit vector toC, ands is
arc length roundC. Relation~1! defines an effective Hilber
space whose dimension is of orderk, and where an eigen
state is represented byw(s)[]f/]n(r (s)); the eigenfunc-
tion in this space.

Now we deform the boundary by changing a shape
rameterl (l 5l 0 for C!. Using Eq.~1! it is possible to show
@17# that eigenenergies (k2) and eigenfunctions at differen
values of the parameter are connected through the follow
parameter dependent Hamiltonian written in the basis$wm%
of eigenfunctions atl 0 ,

Hmn~ l 01dl !.km
2 dm,n1dl Hmn8 , ~2!

with

Hmn8 52S R
C
r n8 wm wn dsD 3@11~km2kn!O~k21!#,

~3!
R5225 © 1998 The American Physical Society
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where primes indicate derivation with respect tol . Relation
~3! was obtained previously@18# for the case whenkm
5kn . By diagonalizingH(l 1) we obtain the eigenenergie
k̃m

2 and the eigenfunctionsw̃m at l 1 . Suppose that atl 1 the
statesm andn collide in an AC. In Ref.@19# an efficient way
of determining AC was described in terms of the coefficie
Cmn(l )[^wmu]wn /]l & which define a driven evolution o
the system. Using Eq.~2! and perturbation theory we obtai
Cmn(l )5Hmn8 /(km

2 2kn
2), wherem andn are associated with

eigenstates ofH(l ) ~the adiabatic basis!. Around l 1 , Cmn

FIG. 1. ~a! Spectrum of the transformed Hamiltonian by elim
nation of all avoided crossing satisfying Eq.~4! with v51.5. The
scarred states corresponding to Fig. 3~b! are shown.~b! Same as~a!
for v55.
s

behaves like the Lorentzian function (l int/2)/@ l int
2 1(l

2l 1)2#, with l int51/2Cmn(l 1). The area in the energy
spectrum, where the AC is relevant, can be estimated
Amn5(Dk2)(l int). Then, if the area is lower than a pre
scribed valuev,

Amn5~km
2 2kn

2!2/uHmn8 u,v[ml̇ ln 24/p\, ~4!

we eliminate the AC by transforming the diagonal matrix
H(l 1) as follows:k̃m

2 (new)5 k̃n
2(new)5( k̃m

2 1 k̃n
2)/2. All AC

that satisfy Eq.~4! are eliminated in the increasing order
their area. Criterion~4! has also a simple dynamic interpre
tation. If the billiard contains a particle of massm and the
boundary is driven with a velocityl̇ , the AC is eliminated
when the Landau-Zener probability transition is greater th
1
2 .

The new Hamiltonian is less chaotic than the previo
one, and the adiabatic basis of the new Hamiltonian is m
adequate to study nonadiabatic effects@20#. For nearly inte-
grable billiards, this new adiabatic basis goes to the diab
one of the original Hamiltonian. For chaotic billiards, th
elimination of AC between nearest neighboring levels giv
rise to AC between distant levels@see Fig. 1~a!#.

We have studied the desymmetrized stadium billiard w
radiusr and straight line of lengtha @19#. The boundary only
depends on the shape parameterl 5a/r ~the area is fixed to
the value 11p/4). Figure 2 compares the approximate
spectrum@21# obtained from Eq.~2! with the exact one; the
agreement is excellent. We find structures surviving pa
metric variation~straight lines interrupted by small AC!, the
most evident being BB states, e.g., states 6, 14, and 1
Fig. 3~a!. But in general any localized eigenfunction has t
same behavior. In Fig. 1~a! we show the spectrum of th
transformed Hamiltonian by elimination of all AC satisfyin
Eq. ~4!, with v51.5. At this stage all BB structures embe
ded in the spectrum emerge clearly. BB states are identi

FIG. 2. Approximated spectrum~solid lines! obtained from Eq.
~2! is compared with the exact spectrum~dots!.
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FIG. 3. ~a! Linear density plots of the eigenfunctions for the stadium billiar withl 51 and area 11p/4. The numbers below each plo
are the label~left! and the wave numberk. ~b! Linear density plots of the eigenfunctions for the transformed Hamiltonian by eliminatio
all avoided crossing satisfying Eq.~4!, with v55. Letters on the top identify periodic orbits of Fig. 4 with higher contribution to e
localized state. The label,A^k2& and the dispersions are shown below each plot.s is measured in units of the mean energy levels.
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by the quantum numbers (nx ,ny) counting excitations in the
horizontal and vertical direction respectively;ny labels BB
series. The states 14, 18, and 23 of Fig. 3~b! correspond to
(nx,15), with nx51, 2, and 3, respectively, and states 6, 1
and 28 to (nx,14), with nx56, 7, and 8. At this stage als
many scars of short periodic orbits clearly appear. They
the states 1, 2, 4, 7, 8, 9, 12, 17, 20, 21, 22, 26, 28, 29,
30 of Fig. 3~b!; the associated periodic orbits are identified
Fig. 4. In Fig. 2~b! we have eliminated avoided crossings
to v55 giving rise to new localized structures; states 3,
10, 11, 13, 24, and 27 of Fig. 3~b!. We have not identified the
states 15 and 25~probably contributed by the whisperin
gallery family of periodic orbits! and the state 19.

The structures in Fig. 3~b! are obtained from the spectrum
,

re
nd

,

@Fig. 3~a!# by an orthogonal transformation which reduc
the parametric interaction among states; that is, the n
diagonal elements of the deformation matrixH8 are reduced
considerably in the new basis. The new states are chara
ized by the mean energy^k2& and the dispersions measured
in units of the mean energy levels. Ifs is lower than one, the
new state has high probability of appearing in the spectru
For s51 the associated structure lives a time equal to
Heisenberg time. For scars of periodic trajectories we exp
s to increase withk according to the Shnirelman’s theorem
For BB states with fixednx , we expects to go to zero when
ny go to infinite.

The nondiagonal elements of the original Hamiltonian
the new basis give us the interaction between localized st
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tures. We have observed strong interaction between sim
structures. For example, BB states~1, 15! and ~2, 15! have
low interaction with the other states~AC are very small; see
Fig. 2!, except with the BB state~7, 14! and with the states
10 and 24 of Fig. 3~b!. Strong interaction was also observe
between scars of short periodic orbits which are close
phase space. For example, states 4 and 22 have strong
action with states 2 and 17 respectively, and states 10 an
with states 11 and 27 respectively. In some situations,
strong interaction probably decides the occurrence of a
fined structure. For example, states 4 and 22 are built p
cipally with orbit ~j !, but the Bohr-Sommerfeld quantizatio
rule for this orbit@k50.6999(n11/4)# predicts a scar atk
;47.07, which is not observed. However, the second con
bution, given by orbit~d! @k51.3013 (n11/2)#, does not
predict such scar. In fact, in the range 35,k,55 we have
observed structures like 4 and 22 only for those values ok
which satisfy approximately quantization for~j ! and ~d! si-

FIG. 4. Several short periodic orbits of the desymmetrized
dium billiard with l 51.
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multaneously. A deep study of this beating phenomenon
the interaction between periodic orbits, which appear v
strong and can introduce new insight into the semiclass
theory of chaotic systems, is presently under way@17#.

We transform the eigenfunctions in order to reduce
parametric interaction between states. From a semiclas
point of view, long periodic orbits do not contribute to the
new structures, but they provide the interaction betwe
these localized structures. The possibility of obtaining t
interaction without requiring explicitly long periodic orbit
would be the key for a semiclassical theory of short perio
orbits. On the other hand, we stress that the study of th
localized structures in terms of short periodic orbits is am
nable to the technique developed recently in Ref.@12#.

An open question is to know if this method can be appl
successfully to any chaotic system. Berry has shown that
quantum universality breaks down for level statistics invo
ing energy levels so distant as to correspond to energy ra
of order \ ~rather than\ f as for nearby levels, withf the
freedom of the system! @22#. In particular, spectral rigidity
depends in that case strongly on short periodic orbits. On
same footing, we believe the quantum universality to bre
down for wave functions obtained by eliminating avoid
crossings so distant as to correspond to energy range
order \. In this case, we expect the wave functions to
highly localized on short periodic orbits.

Finally, we mention that the large parametric correlati
observed by Tomsovic@23# in the stadium billiard~random
matrix theory predicts no correlations! is simply understood
in terms of these localized structures. On the other ha
diffusion and dissipation in mesoscopic systems are affec
by these localized structures and the theory developed
Wilkinson @24# based on random matrix theory needs to
revised.

We would like to thank M. Saraceno for useful sugge
tions. E.V. acknowledges the hospitality of U. Smilans
and The Weizmann Institute of Science, where part of t
work was done.
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