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Localized structures embedded in the eigenfunctions of chaotic Hamiltonian systems
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We study quantum localization phenomena in chaotic systems with a parameter. The parametric motion of
energy levels proceeds without crossing any other and the defined avoided crossings quantify the interaction
between states. We propose the elimination of avoided crossings as the natural mechanism to uncover localized
structures. We describe an efficient method for the elimination of avoided crossings in chaotic billiards and
apply it to the stadium billiard. We find many scars of short periodic orbits revealing the skeleton on which
guantum mechanics is built. Moreover, we have observed strong interaction between similar localized struc-
tures.[S1063-651X98)51311-§

PACS numbgs): 05.45:+hb, 03.20+i, 03.65.Sq

The connection between individual eigenstates and classization. But in a chaotic system it is impossible to remove all
cal invariant sets in chaotic systems is far from being fullyAC because an individual eigenstate interacts strongly with
understood at present. A first step was given by Bély other states and the interaction is of long range. However, we
and Vorog 2] 20 years ago. They conjectured that the eigenWill extract only the AC with highest curvatures. Recently, it
states are associated with the whole energy surface explor&ps stressefll4] that the distribution of highest curvatures
ergodically by the orbits and then, the eigenstates would bBas a universal character and the tail of low curvatures is a
locally like random superpositions of plane waves. That pic-Particular property of the system possibly associated with
ture is supported by Shnirelman’s theoré®) and the pio- ~ Scarring phenomena. Precisely, we wantemove the uni-
neering numerical work by McDonald and Kaufmp] on ~ Vversal property of chaotic eigenfunctions related to the
the Bunimovich stadium billiard, an ergodic systeis. Shnirelman’s theoremand toretain fluctuations revealed
However, the paper by He”d]ﬁ] modified that point of like phase space localizatio®n the same fOOting, Takami
view. He emphasized that a large number of high excited15] has suggested that AC are contributed by long periodic
eigenfunctions for the stadium billiard has an enhancemerfibits. In the light of this, by removing AC, scars of short
along the shorter periodic trajectoriessars. In 1988, Bogo-  Periodic orbits would arise. . _
molny [7] developed the semiclassical theory of scars and We have developed a simple method to remove AC in
explained the extra density near unstable periodic trajectochaotic billiards governed by a shape parameter. L&)
ries. He represented the probability density as a sum over @d ¢,(r) be normalized eigenfunctions of a planar billiard
finite number of periodic orbitésee alsd8]). with Dirichlet conditions on the boundaty In Ref.[16] the

Another unexpected localization phenomenon was obfollowing quasiorthogonality relation was shown
served in the stadium billiard for the first time; the famous ob. 9, r. ds (k. —k.)
bouncing ball(BB) stateq9]. They correspond to the family é ETT D P s 42 01, (D)
of neutral periodic orbits living in the stadium. Localization ¢ an oan 2k,k, 7 (k,+k,)
is stronger than in the case of scars and survives the semi- ) )
classical limit[10]. The semiclassical theory of BB was de- Wherek,, andk, are the corresponding eigenwave numbers,
veloped recently by Tanngt.1]. r,=r-n with n the outwgrd norma! unit vector m andg is

It is easy to observe BB states in the stadium billiard, bu@r¢ length round’. Relation(1) defines an effective Hilbert
it is practically impossible to find complete series of BB SPace whose dimension is of orderand where an eigen-
states. On the other hand, it is very difficult to find a family State is represented hy(s)=d¢/on(r(s)); the eigenfunc-
of scars. That is, given a scar with wave numhewhich ~ tion in this space. _
is associated to a particular periodic orbit of length Now we deform the boundary by changing a shape pa-
we expect to see a family of scars of the same orbit afameter” (/=7 for C). Using Eq.(1) it is possible to show
k+27n/ L [6], with n an integer. But in general, a sequence[17] that eigenenergieskf) and eigenfunctions at dlfferent_
of similar scars is not observed. Such a phenomenon appeafdlues of the parameter are connected through the following
only for some short periodic orbits in some regions of theParameter dependent Hamiltonian written in the bagis}
spectrum but it is impossible to define a systematic of scar§f eigenfunctions at’y,

[12] % % 2 g !

We believe that in order to study the mechanisms giving Hul /ot 67) =K, 8y, 07 Hy,, @
rise to localization it is necessary first to clean the spectrum,ih
The individual properties of two well defined states depend-
ing on a parameter are mixed when they collide in an
avoided crossin13]. Then, we expect that the elimination H = _( fﬁr, 0. ¢, ds
of avoided crossing6AC) in systems governed by a param- my chTHTY
eter dependent Hamiltonian provides a mechanism for local- (3

X[1+(k,—k,)O(k H],
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FIG. 1. (@) Spectrum of the transformed Hamiltonian by elimi-
nation of all avoided crossing satisfying E@) with v=1.5. The
scarred states corresponding to Figh)3are shown(b) Same aga)
for v=>5.

where primes indicate derivation with respecttoRelation
(3) was obtained previously18] for the case wherk,
=k, . By diagonalizingH(/’;) we obtain the eigenenergies
k% and the eigenfunctior®, at/’;. Suppose that af; the
statesu and v collide in an AC. In Ref[19] an efficient way

48.5

FIG. 2. Approximated spectrurfsolid lineg obtained from Eq.
(2) is compared with the exact spectrydots.

behaves like the Lorentzian function/i(,/2)/[/2,+(/
—/1)?], with /,,=1/2C,,(/1). The area in the energy
spectrum, where the AC is relevant, can be estimated by
AW=(Ak2)(/im). Then, if the area is lower than a pre-
scribed valuey,

A== IK2)2IH, |<v=m/ In 2" wh, ()

v

we eliminate the AC by transforming the diagonal matrix of
H(/1) as follows:k’ (new)=k3(new)= (k3 +k2)/2. All AC
that satisfy Eq(4) are eliminated in the increasing order of
their area. Criteriort4) has also a simple dynamic interpre-
tation. If the billiard contains a particle of mass and the

boundary is driven with a velocity’, the AC is eliminated

when the Landau-Zener probability transition is greater than
1

5.
The new Hamiltonian is less chaotic than the previous

one, and the adiabatic basis of the new Hamiltonian is more
adequate to study nonadiabatic effd@6]. For nearly inte-
grable billiards, this new adiabatic basis goes to the diabatic
one of the original Hamiltonian. For chaotic billiards, the
elimination of AC between nearest neighboring levels gives
rise to AC between distant levelsee Fig. 19)].

We have studied the desymmetrized stadium billiard with
radiusr and straight line of length [19]. The boundary only
depends on the shape parametera/r (the area is fixed to
the value H w/4). Figure 2 compares the approximated
spectrum 21] obtained from Eq(2) with the exact one; the
agreement is excellent. We find structures surviving para-
metric variation(straight lines interrupted by small ACthe
most evident being BB states, e.g., states 6, 14, and 18 of

of determining AC was described in terms of the coefficientsFig. 3(a). But in general any localized eigenfunction has the

C.()=(e,lde,l3/) which define a driven evolution of
the system. Using Ed2) and perturbation theory we obtain
C.()= H,’w/(ki_ k?), whereu and v are associated with

eigenstates oH (/) (the adiabatic basisAround /', C,,

same behavior. In Fig.(4 we show the spectrum of the
transformed Hamiltonian by elimination of all AC satisfying
Eq. (4), with v=1.5. At this stage all BB structures embed-
ded in the spectrum emerge clearly. BB states are identified
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FIG. 3. () Linear density plots of the eigenfunctions for the stadium billiar with 1 and area * w/4. The numbers below each plot
are the labelleft) and the wave numbé. (b) Linear density plots of the eigenfunctions for the transformed Hamiltonian by elimination of
all avoided crossing satisfying E4), with v=5. Letters on the top identify periodic orbits of Fig. 4 with higher contribution to each
localized state. The label/(k?) and the dispersiomr are shown below each plat: is measured in units of the mean energy levels.

by the quantum numbersi(,n,) counting excitations in the [Fig. 3@] by an orthogonal transformation which reduces
horizontal and vertical direction respectively, labels BB the parametric interaction among states; that is, the non-
series. The states 14, 18, and 23 of Figb)Iorrespond to diagonal elements of the deformation mattx are reduced
(n,,15), withn,=1, 2, and 3, respectively, and states 6, 16,considerably in the new basis. The new states are character-
and 28 to 0,,14), withn,=6, 7, and 8. At this stage also ized by the mean energk?) and the dispersionr measured
many scars of short periodic orbits clearly appear. They aré units of the mean energy levels.dfis lower than one, the
the states 1, 2, 4, 7, 8, 9, 12, 17, 20, 21, 22, 26, 28, 29, andew state has high probability of appearing in the spectrum.
30 of Fig. 3b); the associated periodic orbits are identified inFor =1 the associated structure lives a time equal to the
Fig. 4. In Fig. Zb) we have eliminated avoided crossings up Heisenberg time. For scars of periodic trajectories we expect
to v=>5 giving rise to new localized structures; states 3, 5,0 to increase wittk according to the Shnirelman’s theorem.
10, 11, 13, 24, and 27 of Fig(l3. We have not identified the For BB states with fixed, , we expectr to go to zero when
states 15 and 2%probably contributed by the whispering n, go to infinite.
gallery family of periodic orbitsand the state 19. The nondiagonal elements of the original Hamiltonian in
The structures in Fig.(8) are obtained from the spectrum the new basis give us the interaction between localized struc-
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(d) multaneously. A deep study of this beating phenomenon and
the interaction between periodic orbits, which appear very
strong and can introduce new insight into the semiclassical
theory of chaotic systems, is presently under Wa¥.

We transform the eigenfunctions in order to reduce the
parametric interaction between states. From a semiclassical
point of view, long periodic orbits do not contribute to these
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(i) (G (k) (1) new structures, but they provide the interaction between
these localized structures. The possibility of obtaining this
l\ A\ interaction without requiring explicitly long periodic orbits

would be the key for a semiclassical theory of short periodic
(m) (n) (©) (P) " orbits. On the other hand, we stress that the study of these
q localized structures in terms of short periodic orbits is ame-

nable to the technique developed recently in R&2].

(q) (r) )Q\(S) (1) An open question is to know if this method can be applied
% successfully to any chaotic system. Berry has shown that the

m quantum universality breaks down for level statistics involv-

. . , ing energy levels so distant as to correspond to energy ranges
diurlilth)}||?a..r(jss\>liff:a/Liqort periodic orbits of the desymmetrized staq,¢ qer 4 (rather thani! as for nearby levels, with the
S freedom of the systey{22]. In particular, spectral rigidity
depends in that case strongly on short periodic orbits. On the
Aame footing, we believe the quantum universality to break
down for wave functions obtained by eliminating avoided

g . : crossings so distant as to correspond to energy ranges of
Fig. 2), except with the BB staté7, 14 and with the states order . In this case, we expect the wave functions to be

10 and 24 of Fig. &). Strong interaction was also observed highly localized on short periodic orbits
between scars of short periodic orbits which are close in Finally, we mention that the large parametric correlation

phase space. For example, states 4 and 22 have strong intgsceed by Tomsovif23] in the stadium billiardrandom
action with states 2 and 17 respectively, and states 10 and atrix theory predicts no correlations simply understood

with states 11 and 27 respectively. In some situations, thig, toms of these localized structures. On the other hand,
fined E | 4 and 22 buil 'iffusion and dissipation in mesoscopic systems are affected
Ined structure. For example, states 4 an are built PNy these localized structures and the theory developed by

cipally with orbit (j), but the Bohr-Sommerfeld quantization yiki 241 based d trix th ds to b
rule for this orbit[ k=0.69996+ 1/4)] predicts a scar dat re\l/islgz(,)n[ | based on random matrix theory needs to be

~47.07, which is not observed. However, the second contri-

bution, given by orbit(d) [k=1.3013 6+1/2)], does not We would like to thank M. Saraceno for useful sugges-
predict such scar. In fact, in the range<386<55 we have tions. E.V. acknowledges the hospitality of U. Smilansky
observed structures like 4 and 22 only for those valuels of and The Weizmann Institute of Science, where part of this
which satisfy approximately quantization fgn and (d) si- work was done.

tures. We have observed strong interaction between simil
structures. For example, BB statéls 15 and (2, 15 have
low interaction with the other statéAC are very small; see
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